$V = 3125.03 (15) \text{ Å}^3$

 $0.25 \times 0.14 \times 0.06 \text{ mm}$

24334 measured reflections

3650 independent reflections

2128 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.09 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.043$

refinement $\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.16 \text{ e } \text{ Å}^{-3}$

Z = 8Mo *K* α radiation

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(4-Hydroxyphenyl)acetic acid– 4,4'-bipyridine (1/1)

Jian-Feng Liu and Guo-Liang Zhao*

College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China Correspondence e-mail: sky53@zjnu.cn

Received 10 May 2010; accepted 20 May 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.139; data-to-parameter ratio = 17.1.

In the acid molecule of the title complex, $C_{10}H_8N_2 \cdot C_8H_8O_3$, the acetyl C-C-C-O torsion angle is -32.1 (3)°, and in the molecule of the base, the dihedral angle between the two pyridine rings is 23.41 (10)°. In the crystal structure, intermolecular O-H···N hydrogen bonds link the acid and the base molecules into a one-dimensional triple-helix framework extended along the *b* axis.

Related literature

For related functional complexes, see: Han *et al.* (2009). For hydrogen-bond motif structures, see: Tomura & Yamashita (2001).

Experimental

Crystal data

$C_{10}H_8N_2 \cdot C_8H_8O_3$
$M_r = 308.33$
Monoclinic, $C2/c$
a = 25.3578 (6) Å
b = 10.2305 (2) Å
c = 14.2546 (4) Å
$\beta = 122.321 \ (2)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.984, T_{\rm max} = 0.994$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	
$wR(F^2) = 0.139$	
S = 1.06	
3650 reflections	
214 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

	•	,		
$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$02 - H2O \cdots N2^{i}$ $03 - H3O \cdots N1^{ii}$	0.97 (2) 0.87 (2)	1.71 (2) 1.86 (2)	2.679 (2) 2.728 (2)	179 (2) 171 (2)
	1 1 40		1	

Symmetry codes: (i) $x + \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $-x + 1, y + 1, -z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2281).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Han, L., Zhou, Y., Wang, X. T., Li, X. & Tong, M. L. (2009). J. Mol. Struct. 923, 24–27.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tomura, M. & Yamashita, Y. (2001). Chem. Lett. 30, 532-533.

supplementary materials

Acta Cryst. (2010). E66, o1455 [doi:10.1107/S1600536810018842]

2-(4-Hydroxyphenyl)acetic acid-4,4'-bipyridine (1/1)

J.-F. Liu and G.-L. Zhao

Comment

The design and synthesis of coordination complexes have absorbed considerable attention due to their diverse structures with 4,4'-bipyridine linker (Han *et al.*, 2009). Moreover, hydrogen bond can also play a role in forming motif structures (Tomura & Yamashita, 2001). We have designed the title complex in an attempt to prepare crystaline magnetic materials and report its crystal structure in this paper.

The structure of the title complex is shown in Fig. 1, which reveals that it contains 2-(4-hydroxyphenyl)acetic acid and 4,4'-bipyridine in a ratio of 1:1. In the molecule of 2-(4-hydroxyphenyl)acetic acid, the acetyl torsion angle C(1)—C(7)—C(8)—O(2) is -32.1 (3) °, and in the molecule of 4,4'-bipyridine, the dihedral angle between the two pyridine rings is 23.41 (10) °. The two molecules arranged in the crystal at regular intervals with two O—H…N hydrogen bonds. The end to end hydrogen-bonding interactions lead to the formation of a one-dimensional triple-helix structure framework along the *b*-axis, Fig 2. Between adjacent triple-helix chains there exist weak π — π interactions.

Experimental

2-(4-hydroxyphenyl) acetic acid (0.152 g, 1 mmol) and 4,4'-bipyridine (0.156 g, 1 mmol) were added to a mixed solution of ethanol (20 ml) and water (10 ml) with Cu(SO₄)₂ (0.127 g, 0.5 mmol) under stirred conditions at room temperature. A few minutes later a lot of blue deposit appeared. After the deposit was filtered out, a light blue solution was kept for evaporating. Colorless single crystals of the title complex were obtained about 19 days later.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and 0.97 Å for methylene and aryl H-atoms, respectively and $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms bonded to O atoms were located in a difference Fourier map and refined without restraints.

Figures

Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The packing plot of the complex showing triple-helix chains.

2-(4-Hydroxyphenyl)acetic acid-4,4'-bipyridine (1/1)

Crystal data

C10H8N2·C8H8O3 $M_r = 308.33$ Monoclinic, C2/c Hall symbol: -C 2yc a = 25.3578 (6) Å b = 10.2305 (2) Å c = 14.2546 (4) Å $\beta = 122.321 \ (2)^{\circ}$ $V = 3125.03 (15) \text{ Å}^3$ Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer	3650 independent reflections
Radiation source: fine-focus sealed tube	2128 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.043$
φ & ω scans	$\theta_{\text{max}} = 27.7^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -32 \rightarrow 32$
$T_{\min} = 0.984, \ T_{\max} = 0.994$	$k = -13 \rightarrow 13$
24334 measured reflections	$l = -18 \rightarrow 18$

F(000) = 1296

 $\theta = 1.9-27.7^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless $0.25 \times 0.14 \times 0.06 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.311 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3274 reflections

.

map

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.139$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.065P)^2 + 0.2994P]$ where $P = (F_o^2 + 2F_c^2)/3$
3650 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
214 parameters	$\Delta \rho_{\text{max}} = 0.15 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.54789 (7)	0.32235 (16)	0.04851 (15)	0.0637 (5)
C2	0.54036 (7)	0.28856 (15)	0.13430 (17)	0.0674 (5)
H2A	0.5211	0.2098	0.1308	0.081*
C3	0.56064 (8)	0.36856 (15)	0.22505 (16)	0.0624 (5)
H3A	0.5554	0.3431	0.2822	0.075*
C4	0.58890 (7)	0.48680 (14)	0.23132 (14)	0.0540 (4)
C5	0.59659 (7)	0.52233 (14)	0.14611 (14)	0.0555 (4)
H5A	0.6156	0.6014	0.1494	0.067*
C6	0.57611 (8)	0.44072 (16)	0.05596 (15)	0.0618 (4)
H6A	0.5814	0.4660	-0.0011	0.074*
C7	0.52498 (9)	0.23409 (19)	-0.05088 (17)	0.0888 (7)
H7A	0.4826	0.2074	-0.0765	0.107*
H7B	0.5235	0.2843	-0.1100	0.107*
C8	0.56331 (9)	0.11343 (17)	-0.03167 (16)	0.0686 (5)
C9	0.27818 (7)	0.03470 (14)	0.13722 (13)	0.0531 (4)
C10	0.24522 (9)	-0.08224 (16)	0.10478 (15)	0.0668 (5)
H10A	0.2019	-0.0821	0.0680	0.080*
C11	0.27717 (11)	-0.19771 (17)	0.12756 (17)	0.0777 (6)
H11A	0.2543	-0.2749	0.1067	0.093*
C12	0.37044 (10)	-0.09378 (19)	0.20793 (17)	0.0780 (6)
H12A	0.4136	-0.0968	0.2423	0.094*
C13	0.34242 (8)	0.02609 (17)	0.19086 (15)	0.0669 (5)
H13A	0.3666	0.1015	0.2153	0.080*
C14	0.24634 (7)	0.16282 (14)	0.11616 (13)	0.0510 (4)
C15	0.18450 (8)	0.17940 (15)	0.03144 (14)	0.0600 (4)
H15A	0.1621	0.1097	-0.0147	0.072*
C16	0.15638 (8)	0.29964 (16)	0.01587 (15)	0.0656 (5)
H16A	0.1144	0.3078	-0.0394	0.079*
C17	0.24598 (9)	0.38940 (16)	0.15596 (15)	0.0657 (5)
H17A	0.2678	0.4619	0.1983	0.079*
C18	0.27730 (8)	0.27190 (15)	0.17954 (14)	0.0616 (4)
H18A	0.3188	0.2660	0.2375	0.074*
N1	0.33881 (9)	-0.20646 (15)	0.17762 (14)	0.0809 (5)
N2	0.18645 (7)	0.40479 (13)	0.07623 (12)	0.0636 (4)
01	0.54120 (7)	0.01483 (14)	-0.08188 (14)	0.1052 (6)
O2	0.62304 (6)	0.12757 (12)	0.04163 (12)	0.0847 (5)
H2O	0.6456 (10)	0.046 (2)	0.0532 (17)	0.102*
O3	0.60808 (6)	0.56199 (12)	0.32305 (11)	0.0733 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H3O	0.6234 (10)	0.635 (2)	0.315	0 (17)	0.088*	
Atomic displac	ement parameters	(A^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0446 (9)	0.0533 (9)	0.0674 (12)	0.0112 (7)	0.0128 (8)	-0.0090 (8)
C2	0.0489 (10)	0.0440 (9)	0.0873 (13)	-0.0055 (7)	0.0218 (9)	-0.0050 (9)
C3	0.0525 (10)	0.0557 (9)	0.0743 (12)	-0.0072 (7)	0.0308 (9)	0.0034 (8)
C4	0.0497 (9)	0.0439 (8)	0.0632 (11)	-0.0009 (6)	0.0266 (8)	-0.0024 (7)
C5	0.0510 (9)	0.0436 (8)	0.0665 (11)	-0.0021 (6)	0.0279 (8)	0.0006 (7)
C6	0.0531 (10)	0.0616 (10)	0.0626 (11)	0.0104 (7)	0.0255 (9)	0.0015 (8)
C7	0.0684 (13)	0.0733 (12)	0.0792 (13)	0.0164 (10)	0.0090 (10)	-0.0249 (10)
C8	0.0630 (12)	0.0584 (10)	0.0692 (12)	0.0031 (8)	0.0252 (10)	-0.0127 (9)
С9	0.0596 (10)	0.0485 (8)	0.0501 (9)	0.0060 (7)	0.0286 (8)	0.0056 (7)
C10	0.0709 (12)	0.0541 (10)	0.0711 (12)	0.0042 (8)	0.0350 (10)	0.0022 (8)
C11	0.0991 (16)	0.0501 (10)	0.0807 (13)	0.0072 (10)	0.0461 (12)	0.0066 (9)
C12	0.0722 (13)	0.0720 (13)	0.0792 (13)	0.0231 (10)	0.0333 (11)	0.0192 (10)
C13	0.0621 (11)	0.0595 (10)	0.0687 (12)	0.0107 (8)	0.0280 (10)	0.0110 (8)
C14	0.0547 (9)	0.0484 (8)	0.0533 (9)	0.0038 (7)	0.0311 (8)	0.0066 (7)
C15	0.0599 (10)	0.0501 (9)	0.0636 (11)	0.0012 (7)	0.0288(9)	-0.0005(8)
C16	0.0555 (10)	0.0618 (10)	0.0669 (11)	0.0091 (8)	0.0233(9)	0.0035 (9)
C17	0.0690(12)	0.0540 (9)	0.0680 (11)	0.0023 (8)	0.0215(3)	-0.0062(8)
C18	0.0562(10)	0.0567(9)	0.0624 (11)	0.0023(0) 0.0022(7)	0.0223(10) 0.0253(9)	-0.0027(8)
N1	0.0002(10) 0.1009(14)	0.0507(9)	0.0021(11)	0.0022(7)	0.0255(3)	0.0179(8)
N2	0.0656 (10)	0.0546 (8)	0.0665 (9)	0.0205(7)	0.0327(8)	-0.0004(7)
01	0.0030(10) 0.0818(10)	0.0680 (9)	0.0005(9) 0.1354(14)	-0.0077(7)	0.0327 (0)	-0.0416(9)
02	0.0640 (9)	0.0596 (7)	0.1334(14) 0.0937(10)	0.0124 (6)	0.0370(9)	-0.0179(7)
03	0.0040(9)	0.0576(7)	0.0738(8)	-0.0124(0)	0.0467 (8)	-0.0172(7)
05	0.0921 (10)	0.0570(7)	0.0750 (0)	0.0100 (0)	0.0407 (0)	0.0124 (0)
Geometric par	ameters (Å, °)					
C1—C2		1.379 (3)	C10–	C11	1.3	70 (2)
C1—C6		1.382 (2)	C10–	-H10A	0.92	300
C1—C7		1.510(2)	C11–	-N1	1.33	30 (2)
C2—C3		1.377 (2)	C11–	-H11A	0.92	300
C2—H2A		0.9300	C12–	-N1	1.33	37 (3)
C3—C4		1.384 (2)	C12—C13		1.3	72 (2)
С3—НЗА		0.9300	C12–	-H12A	0.92	300
C4—O3		1.3631 (19)	C13–	-H13A	0.92	300
C4—C5		1.378 (2)	C14—C18		1.38	35 (2)
C5—C6		1.380 (2)	C14—C15		1.38	36 (2)
C5—H5A		0.9300 C15—C16 1.379 (2)		C15—C16		79 (2)
С6—Н6А		0.9300	C15–	-H15A	0.93	300
С7—С8		1.503 (2)	C16–	-N2	1.33	33 (2)
C7—H7A		0.9700	C16–	-H16A	0.9	300
С7—Н7В		0.9700	C17–	-N2	1.32	27 (2)
C8—O1		1.190 (2)	C17–	C18	1.38	30 (2)
C8—O2		1.309 (2)	C17–	-H17A	0.93	300
C9—C13		1.384 (2)	C18–	-H18A	0.9.	300

C9—C10	1.389 (2)	O2—H2O	0.97 (2)
C9—C14	1.484 (2)	O3—H3O	0.87 (2)
C2—C1—C6	117.60 (16)	C11—C10—H10A	120.3
C2—C1—C7	121.07 (18)	C9—C10—H10A	120.3
C6—C1—C7	121.33 (19)	N1—C11—C10	124.19 (18)
C3—C2—C1	121.66 (16)	N1—C11—H11A	117.9
С3—С2—Н2А	119.2	C10-C11-H11A	117.9
C1—C2—H2A	119.2	N1—C12—C13	123.29 (19)
C2—C3—C4	120.03 (17)	N1—C12—H12A	118.4
С2—С3—НЗА	120.0	C13—C12—H12A	118.4
С4—С3—НЗА	120.0	C12—C13—C9	119.99 (17)
O3—C4—C5	123.41 (14)	C12—C13—H13A	120.0
O3—C4—C3	117.52 (16)	C9—C13—H13A	120.0
C5—C4—C3	119.07 (15)	C18—C14—C15	116.89 (14)
C4—C5—C6	120.07 (14)	C18—C14—C9	121.49 (14)
С4—С5—Н5А	120.0	C15—C14—C9	121.61 (14)
С6—С5—Н5А	120.0	C16—C15—C14	119.74 (16)
C5—C6—C1	121.56 (17)	C16—C15—H15A	120.1
С5—С6—Н6А	119.2	C14—C15—H15A	120.1
С1—С6—Н6А	119.2	N2—C16—C15	123.21 (16)
C8—C7—C1	115.68 (15)	N2—C16—H16A	118.4
С8—С7—Н7А	108.4	C15—C16—H16A	118.4
С1—С7—Н7А	108.4	N2-C17-C18	123.72 (16)
С8—С7—Н7В	108.4	N2—C17—H17A	118.1
С1—С7—Н7В	108.4	C18—C17—H17A	118.1
Н7А—С7—Н7В	107.4	C17—C18—C14	119.42 (16)
01—C8—O2	123.08 (17)	C17—C18—H18A	120.3
O1—C8—C7	122.41 (17)	C14—C18—H18A	120.3
O2—C8—C7	114.47 (15)	C11—N1—C12	116.44 (15)
C13—C9—C10	116.75 (15)	C17—N2—C16	116.96 (14)
C13—C9—C14	121.38 (14)	C8—O2—H2O	111.5 (12)
C10—C9—C14	121.87 (15)	C4—O3—H3O	108.1 (14)
С11—С10—С9	119.30 (18)		
C6—C1—C2—C3	-0.7(2)	N1-C12-C13-C9	-1.8(3)
C7-C1-C2-C3	-17955(15)	C10-C9-C13-C12	11(3)
C1 - C2 - C3 - C4	0.6 (2)	C14—C9—C13—C12	-179.22(16)
$C_2 - C_3 - C_4 - O_3$	-179.97(15)	C13-C9-C14-C18	-230(2)
$C_2 - C_3 - C_4 - C_5$	-0.3(2)	C10-C9-C14-C18	156.71 (16)
03-C4-C5-C6	179.78 (14)	C13—C9—C14—C15	156.28 (16)
C3—C4—C5—C6	0.2 (2)	C10-C9-C14-C15	-24.1(2)
C4—C5—C6—C1	-0.2(2)	C18—C14—C15—C16	-1.8(2)
C_{2} C_{1} C_{6} C_{5}	0.5(2)	C9-C14-C15-C16	178 93 (15)
C7-C1-C6-C5	179 37 (15)	C14-C15-C16-N2	2.6 (3)
$C_2 - C_1 - C_7 - C_8$	-74.3(2)	N2-C17-C18-C14	1.4(3)
C6-C1-C7-C8	106.8 (2)	C_{15} C_{14} C_{18} C_{17}	-0.1(2)
C1 - C7 - C8 - O1	150.2 (2)	C9-C14-C18-C17	179 18 (15)
C1-C7-C8-O2	-32.1(3)	C10-C11-N1-C12	09(3)
C13—C9—C10—C11	0.4 (3)	C13—C12—N1—C11	0.8 (3)
			(-)

supplementary materials

C14—C9—C10—C11 C9—C10—C11—N1	-179.26 (16) -1.5 (3)	C18—C17—N2—C16 C15—C16—N2—C17		-0.7 (3) -1.3 (3)	
Hydrogen-bond geometry (Å, °)					
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O2—H2O···N2 ⁱ	0.97 (2)	1.71 (2)	2.679 (2)	179 (2)	
O3—H3O…N1 ⁱⁱ	0.87 (2)	1.86 (2)	2.728 (2)	171 (2)	
Symmetry codes: (i) $x+1/2$, $y-1/2$, z ; (ii) $-x+1$, $y+1$, $-z+1/2$.					

Fig. 1

